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J. Phys.: Condens. Matter 5 (1993) 5591-5602. Printed in the UK 

The coupling between atomic and electronic structure in small 
Cu clusters 
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t Nordita. Blegdamsvej 17. DK-2100 K0benhavn 0. Denmark 
t Laboratory of Applied Physics, Technical University of Denmark, DK-2800 Lyngby, 
Denmark 
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Abslract. Thermodynamic and ground-state properties of Cu clusterj have been studied with 
the effective-mediun theory including a tight-binding descriptian of the one-electron speclnun. 
Simulated-annealing Monte carlo calculations have been perfmed for cluster sizes between 
3 and 29 to determine ground-state energies and s m c t w .  Finite-temperature ensembles have 
been generated f a  a range of f e m p e ” .  The magic numbers 8, 18 and 20 are reproduced 
and remain stable at temperatures close to IWOK. where the clusters may be regarded as liquid. 
The coupling between the atomic and eleckaNc degrees of freedom ulrough a Jahn-Teller-like 
effect is shown to play a key role in understanding the stability of the magic clusters at high 
tempera”.  For the nan-mapic clusters this Jahn-Teller effect gives rise to large Fermi gaps 
even at high temperatures and a pronounced stability of the even-sized clusters relative to those 
with odd sizes. Finitetemperature elecuomc spectra are calculated. The flucruations in the 
atomic positions give rise to a large broadening of the electronic levels. in agreement with 
experimental observations. Cun exhibits a rather sharp melting transition, whenas clusters of 
other sizes show more complex behaviour. 

1. Introduction 

The physics of metal clusters is a field that has developed rapidly over the last few years [l]. 
Clusters of certain sizes (magic numbers) exhibit an extraordinary stability [I], in much the 
same way as is the case with nuclei. Magic numbers are seen in abundance measurements, 
ionization potentials, dissociation energies etc. They were first observed for Na [21, but the 
same magic numbers have also been seen for other monovalent free-electron-like metals. 
Katakuse and co-workers 131 performed abundance measurements for positively charged 
clusters of Cu, Ag and Au. 

The magic numbers correspond to closed angular momentum shells, and this idea has 
been illustrated in a number of simple models with the common characteristic that the ion 
cores have only been taken into account in a very approximate way. Clemenger [41 applied 
the Nilsson model [5] of nuclear physics to metallic clusters. Here, the one-electron levels 
are constructed as eigenvalues of a simple spheroidal harmonic oscillator. In a study by 
Ekardt [61 the ion cores were replaced by a homogeneous positively charged sphere. Local- 
density calculations on the system of valence electrons reproduced the magic numbers 
observed for Na. In this model the geometry of the cluster was initially ignored Later, 
spatial structure was introduced through a spheroidal distortion of the jellium spheres [7]. 

Calculations including the atomic cores have been performed at different levels of 
approximation. Cluster sizes larger than 13 have been treated almost entirely by vely simple 
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models. An extensive calculation with the simple Hiickel model [SI has been performed 
by Lindsay and co-workers. Small clusters have been treated in configuration-interaction 
calculations; for instance, the relaxed ground-state of Na-clusters of up to eight atoms 
have been determined [9]. Local-density calculations including the ion-cores have been 
done mainly for the ground state of small alkali clusters consisting of a maximum of 13 
atoms [IO, 111. Andreoni and co-workers [12] also performed calculations for Nals and 
Nazo with the Car-Paninello method, where the ground state was found with simulated 
annealing and where finite-temperature properties were investigated. 

The experimental knowledge of the atomic structure of clusters is very sparse. Only 
the structures of some clusters up to seven atoms have been determined [13]. 

In the present work we have applied a model for the binding in a metal cluster, which 
includes a description of the atomic degrees of freedom but which is still computationally 
sufficiently simple to allow for studies of many cluster sizes over a wide temperature range. 
In the following section we will describe the model, the effective-medium theory [14] 
including a tight-binding description of the one-electron spectrum. In the third section we 
describe and discuss the results of applying the model to small Cu clusters. We shall discuss 
the interplay between ‘magicity’ and geomeny, and show that atomic relaxations are very 
important in understanding the extraordinary stability of clusters with magic sizes. Sizeable 
Fermi gaps also exist in non-magic clusters with an even number of atoms. The influence 
of heating of the atomic degrees of freedom on stability is treated, and the effect of high 
temperatures on the electronic spectrum is discussed. The melting of small clusters is also 
studied. It is shown that Cu13 has a well defined melting transition at T rr 450K. Other 
cluster sizes exhibit a more complex behaviour. 

A brief account of some of the results discussed here has been presented in [U]. 

2. The effective-medium model 

To study the coupling between the atomic and electronic degrees of freedom in small Cu 
clusters we construct a model which can be used to calculate the total energy and the 
electronic structure of a cluster as a function of atomic positions. The method applied 
in the present work is the effective-medium theory (EMT) [14]. It has the property of 
reproducing a well tested interatomic potential for an infinite system of metallic Cu and it 
takes finite-size shell effects into account through a tight-binding description. The effective 
medium model is based on density functional theory and relies on the fact that errors in 
the total electron density give rise to only second-order errors in the total energy due to the 
variational properties of the energy functional. The idea behind the Em is to approximate 
the energetics of an atom in a metallic environment by a simple reference system, which 
can be taken as the atom embedded in a homogeneous electron gas or as the atom situated 
in a perfect FCC crystal with a suitable lattice constant. In the following presentation we 
shall use the FCC crystal as the reference system. The E m  total-energy expression may be 
written as 

as described in detail elsewhere [ 141. The cohesive energy function Ec describes the energy 
of an FCC crystal of a lattice constant corresponding to a background electron density of ii felt 
by each atom. The atomic-sphere correction energy EAS represents the repulsion between 
overlapping atomic spheres and plays an important role in non-close-packed structures where 
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the overlap is significant. The one-electron correction El-,, is a correction concerning the 
difference in density of states (DOS) between the reference system and the real system. 

For a finite system like a cluster of Cu atoms the electron DOS consists of a discrete 
set of levels which are not well represented by the DOS of an infinite FcC Cu crystal. It is 
therefore necessary to include the one-electron energy in the description of the energetics of 
small clusters. The one-electron energy El,, is the energy difference due to the formation 
of electronic shells instead of a continuum as in the extended FCC system, and we shall 
 therefore in the following use the term shell energy to be synonymous with the one-electron 
energy. 

The important shell structure in small Cu clusters is due to the 4s electrons. The centre 
of the 4p band of bulk Cu is situated approximately one Rydberg above the centre of the 4s 
band [16], and we shall therefore ignore atomic p orbitals in our description. We shall also 
ignore the filled 3d orbitals. In a more accurate description the p and d orbitals could be 
included; but since the one-electron energy is only a small correction term which describes 
deviations in the electronic structure from that in an FCC crystal, a simple model of the s 
band is sufficient. 

The bonding between the atomic s orbitals is described with a tight-binding Hamiltonian. 
We assume for simplicity that all the atomic s levels are at the same energy and choose 
our energy zero at this common energy. We determine the'.distance dependence of the 
off-diagonal matrix elements Hij between atomic s orbitals situated at atoms i and j in 
the following way. The matrix elements can be expected to decay in the same way as an 
orbital on one of the atoms, which again falls off roughly as the square root of the electron 
density. In the construction of the embedding densities an exponential fall-off is used 

zi e-rrrrgj (2) 
j z i  

where q2 is a p q e t e r  characteristic of Cut. We therefore take the hopping matrix elements 
to be of the form 

i#j (3) H.. - -vo e - W 2 ) l r i ~ - ~ ~ l  
' I  - 

where ro is the equilibrium nearest-neighbour distance between Cu atoms in an FCC crystal. 
The prefactor VO is determined so fiat the width of the occupied part of the s band in 
the tight-biding model for an FCC crystal at equilibrium volume agrees with the one 
calculated self-consistently by Moruzzi and co-workers [17]. The value obtained in this 
way is VO = 0.567 eV'l 

For a given atomic configuration of a cluster the tight-binding Hamiltonian is used to 
calculate the discrete electron spectrum with energies E ,  of the cluster. The band energy 
Er2 in the reference FCC system should be subtracted in the one-electron energy correction. 
The bind energy is a function of the embedding density i, and this function can be calculated 
once and for all by solving the tight-binding Hamiltonian for a range of lattice constants of 
an FCC lattice., The shell energy therefore takes the form 

To summarize, we have described an effective-medium model for the total energy of a 
cluster as a function of atomic positions. The model consists of energy terms which describe 
the local volume changes through embedding densities, electrostatic interactions by use of 
pair potentials, and the shell energy by a tight-binding Hamiltonian. 

t A table with all the effective-medium parameters for Cu can be found in [14]. 
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3. Results and discussinn 

We have performed a number of simulated-annealing Monte Carlo calculations with the 
Metropolis algorithm [ 181 to determine the ground-state configurations of small Cu clusters. 
The simulations have been done both with and without the inclusion of the shell energy 
El-,!. Typically 2-5 runs of Zoo0 coordinate sweeps were made at a given cluster size, 
starting at temperatures in the range 200C-10 OOO K. A sweep involves one trial movement 
of each coordinate, i.e. 3N total-energy calculations. Finite-temperature ensembles were 
generated using lOOOC-40000 sweeps. 

3.1. Ground-state properties 

In this section we present and discuss the calculated ground-state properties of the clusters. 
First, we present the obtained ground-state energies and atomic structures and compare them 
with results from other models and experiment in the cases where it is possible. We then 
discuss the coupling between the electronic and atomic structure via the Jahn-Teller effect. 
This coupling is crucial in understanding the extraordinary stability of the magic clusters 
and the pronounced even-odd oscillations observed in experimental abundance spectra [31. 

The calculated ground-state energies are depicted in figure 1. We measure Ec from the 
minimum value, which is 3.56eV below the atomic energy. Through the points a smooth 
three-parameter curve is drawn with the form 

0 B Christensen and K W Jacobsen 

Egt = aN + bN2I3 + cNlP (5) 

where the first term represents a bulk energy per atom, the second represents a surface energy 
term and the third a curvature term. The magic cluster sizes show up as tiny oscillations 
on the curve. As a convenient way of extracting the magic numbers we plot in figure 2 the 
deviation of the total energies from the fit (5). 

0.5 , l h  rhalf snergy -2.0 
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I 0.5 
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-3 .0  -0.5 
0 5 10 15 20 25 30 0 5 10 15 20 2 5  30 
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Figure 1. Toral energy as a function of cluster size. 
The triangles are obtained with a full calculation while 
the squares result from a calculation where the shell 
energy El- ,  is neglected. The curves are fits to the 
data with the analytic form of (5). 

F w r e  2. Deviation of total energy from the fit (5). 
The triangles are obtained with a full calculation while 
the squares result from a calculation where the shell 
energy EI- .~ is neglected. 

A different way of enhancing the fine structure is to take the second difference 

&(A') = E(N + 1) + E(N - 1) - 2 E ( N ) .  
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Figure 3. Second difference of the total energy. 
E ( N  + I )  + E ( N  - 1) - 2 E ( N ) .  The hiangles are 
obliiined with a full calculatron while the squares result 
from a calculation where the shell energy EI- , I  is 
neglected. 

This quantity is shown in figure 3. Assuming thermal equilibrium it follows [l] that the 
value of Az(N) is proportional to the logarithm of the abundance of N clusters in an 
experimental beam. 

It is clear from the figures that the clusters of size 8, 18 and 20 are particularly stable. 
This means that the tight-binding form used to model the shell energy is indeed able to 
reproduce the magic numbers seen in experiment [Z, 31 and in other models [2,4,6]. The 
magic numbers do not appear in the calculations where the shell energy is neglected. Without 
the shell energy the ground-state configurations are close-packed and the sizes 13 and 19 
appear as magic corresponding to close-packed ground-state. structures with a central atom 
surrounded by all atoms up to first and second nearest-neighbour shells, respectively. 

The s-state tight-binding model for calculating the shell energy is general for monovalent 
metals, and the ground-state structures found in the present calculation are in fact very 
similar to previously published theoretical [%lo, 191 and experimental 1131 results for alkali 
clusters. For instance, in the case of N = 7 the equilibrium structure IS a fivefold bi-pyramid 
(see figure 4) as indicated by electron spin resonance experiments on Li [13]. For N = 13 
we find a cuboctahedral rather than an icosahedral geometry like the Na result of [lo]. 
Structures for cluster sizes N = 5 ,  7, 10 and 13 are shown in figure 4. In figure 5 we 
compare the structure for the N = 20 Cu cluster with the structure for Nam found with 
the Car-Paninello method 1121 by Ballone and co-workers. The two structures are very 
similar, indicating that the cluster structures for the two different metals are determined by 
the same mechanisms. 

To study the variation of the shape of the clusters as a function of size we have evaluated 
the eccentricities. We define the eccentricity of a cluster as follows. The inertial (3 x 3) 
matrix is defined as usual as 

Figure 4. Calculared ground-state smcttues for N = 5, 
7. 10 and 13. 

where i ,  j = 1,2 ,3  are the coordinates and i = (l/N) Ck rk is the centre of mass of the 
cluster. The three eigenvalues J, of this matrix are the moments of inertia. In the case of 
an ellipsoid of axes ai, these are also principal inertial axes with J, cx a:. Thus we define 
the two eccentricities of a cluster as 

Ji 4 J2 4 53. (8) 
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Figure 5. Ground-state srmcNre for N = 20 from our calculation (top 
panel) and from the local-d&sity'calculation of [12] for a Nam cluster 

" , ' (boltom Panel). 

In figure 6 we plot the two calculated eccentricities for the ground-state structures. 
For comparison we also show eccentricities determined from a calculation by Selby and co- 
workers 1201. In the latter calculation the principal axes are related to vibrational frequencies 
of a three-dimensional harmonic oscillator potential, and the energy is minimized with 
respect to one distortion parameter. This so-called Nilsson model [SI was first applied to 
metallic clusters by Clemenger [4]. 
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Figure 6. Eccentricities of ground-stale srmc~ies from 
the present model (top panel) and from the Clemenger 
model [241 (bottom panel). 

Figure 7. One-elecmn levels in lhe calculated cluster 
gound-state configurations. The highest occupied 
levels are indicated by dots (one for each electron on 
the twel). 

As predicted by the Clemenger model, the magic clusters prefer a spherical geometry, 
whereas non-magic clusters tend to be distorted. One feature present in our calculation, but 
not in the Clemenger model, is the almost spherical geometry of N = 13. The minimization 
of the electrostatic repulsion of the ionic nuclei leads to a close-packed cuboctahedral 
structure of the 13 cluster. This fact was already established in local-density calculations by 
Martins and co-workers [IO]. The observation that the tendency to close-packing may 
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be important for determining the ground-state structure, at the same time as the total 
energy has a size-dependence corresponding to angular momentum level bunchings, has 
been established experimentally for larger Cu clusters [21]. 

We now tum to a more detailed discussion of the electronic structure which results from 
the present model and the interplay with the atomic arrangement. 

The tight-binding Hamiltonian (3) has only N eigenvalues and it is therefore clearly 
unable to reproduce the full infinite spectrum of angular momentum levels. However, as 
has been shown for instance in the framework of the LMTO method [I61 a tight-binding 
description may give a good representation of the electronic stmcture in a certain energy 
window. In figure 7 we plot the one-electron spectrum of the equilibrium structure as a 
function of cluster size. The lower levels bunch up in a lowest band of one state and a 
second-lowest of three states, thus reproducing one s and three p states. For the largest 
clusters a d band of five states is recognized. The grouping of levels in s, p and d shells is 
also seen in the spectra calculated by Lindsay and co-workers [SI for the gmund states of 
simple Hiickel clusters. In both calculations, though, the similarity to an angular momentum 
spectrum is only valid some levels below the Fermi level at N / 2 .  

At all even cluster sizes, the ground state has a noticeable Fermi gap irrespective of 
whether there should be a shell closing or not according to the angular momentum model. 
This is illustrated in figure 8. ”he gap is largest at the magic numbers, but is quite large at 
all sizes. Also shown in figure 8 are experimentally observed gaps for Cui  determined with 
photoelectron spectroscopy [22]. We see that the calculated gaps are in fair agreement with 
the experimentally determined values both with regard to the absolute size and the trend 
when the size of the cluster is changed. Note in particular that the raao between a typical 
gap for a magic and a non-magic cluster i s  well reproduced. This ratio is clearly exaggerated 
in simpler models where the atomic degrees of freedom are neglected [22]. Oscillations in 
the cluster energy are seen in experiment [1,3], but are nor of any appreciable size in the 
jellium-ball model of Ekardt [6] or the Clemenger model [4] compared with the strength of 
the magic numbers. One should bear in mind that the experimentally measured gap applies 
to geometries assumed by negatively charged clusters and is therefore different from the gap 
we calculate for the ground state of the neutral species-it does, however, give an estimate 
of the relevant order of magnitude of the quantities considered. 

0 0  
0 5 10 IS 20 25 30 

civrter s,ie 

Figure 8. Calculated Femu gaps in the cluster ground 
states (circlesifull curve) compared with experimen- 
tally [221 delermined gaps for Cui (manglesbmken 
curve). 

- ... - E - 4  
Y 

-6  
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Figure 9. One-electon specmm for b e  diffemit 
alomic s k u c l u ~ ~  for N = 16 (lop panel) and N = 
20 (bottom panel). (A) Ground-slate srmcture. (B) 
Continuum smcture where the shell energy has been 
neglecred. (C) FCC smcture. The Fermi gap is much 
smaller in the two latter smcaues. 
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The existence of Fermi gaps for the non-magic clusters and the observation of an even- 
odd oscillation of the ground-state energy as a function of cluster size lead to the conjecture 
that a Jahn-Teller-like effect is decisive in determining the ground-state structures [23]. In 
the case of an even-sized cluster a small distortion can give rise to the opening of a gap 
between the occupied and the unoccupied levels with a gain in the total energy as a result. 

To confirm that the Jahn-Teller effect is responsible for the even-odd oscillation, we 
have calculated the electronic spectra and the total energies of clusters in two alternative 
sets of atomic structures. The first of these, which we shall call the continuum structures, 
are the ground-state structures for the energy expression (1) without the shell energy El-,,. 

These structures represent ground-state structures if the interatomic interactions are like in 
the bulk metallic system where the electronic spectrum is continuous. The second set of 
structures are simply pieces of an FCC crystal which are chosen to be as spherical as possible. 
This set we call the FCC structures. The lattice constant for the FCC structures are chosen to 
minimize the full energy expression (1). In figure 9 we show one-electron levels for clusters 
of size N = 16 and N = 20 in the three different structures: the ground-state structure, 
the continuum structure, and the FCC structure. It is clear that the gap is much smaller 
for the latter two atomic structures. Also, if we consider the total energy evaluated with 
the full expression (1) versus cluster size for the continuum or FCC structures (figure 10) 
we see no special stability of the magic sizes 8, 18 and 20. This lack of extra stability at 
the magic sizes is not due to the overall shape of the clusters because the continuum and 
FCC structures are just as spherical as the ground-state structures. This is therefore a strong 
indication that the relaxation of the atomic structure is of crucial importance in explaining 
the stability of the magic clusters. The atomic and electronic structure must therefore be 
treated simultaneously as in the present model so the atomic positions are allowed to relax 
to minimize the total energy including the shell energy. 

I 

0 

I - 
20 
a 

1 

0 5 IO 15 20 25 30 

Clvrlsr size 

Figure 10. Second energy difference evaluated using 
(I). The three ~Vucture~ are (A) the ground-state 
sintclws. (B) the continuum sintc~res found by 
neglecting the shell energy. and (C) a maximally 
spherical section of an FCC lattice. Only the sequence 
of fully relaxed ground-state svuctures show the magic 
numbers 8, 18 and 20. The even-odd fluctuation of the 
energy is also absent in the two lower c w a .  
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Figure 11. Energy deviation from the fit (5). Top 
panel: T = 0. Middle panel: T = 460K. Bottom 
panel: T = 930K. The magic numbers 8, 18 and 20 
remain stable. 

In summary, we have seen that the effective-medium model reproduces many qualitative 
ground-state features of simpler jellium and Huckel models and also agrees with more firmly 
based first-principles calculations and experimental results where available. The model 
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indicates that the coupling between the atomic and electronic structures via relaxations is of 
importance in explaining the extraordinary stability of large clusters at the magic numbers 
and also in understanding the electronic spectra, which also exhibit sizable Fermi gaps for 
clusters of (even) non-magic sizes, as observed with photoelectron spectroscopy 1221. 

3.2. Finite-temperature properties 

In this section we discuss some aspects of the behaviour of small Cu clusters at high 
temperatures. We shall show that the extraordinary stability of the magic clusters survive 
even in a temperature regime where the clusters can be regarded as melted. We also discuss 
the electronic spectrum at elevated temperatures. Due to the coupling of the electronic 
structure to the atomic degrees of freedom the spectral peaks are broadened considerably. 
The peak widths are proportional to 2. 

In figure I 1  we plot the deviation from the fit (5) (as in figure 2) for Monte Carlo 
generated ensembles at T = 460K and T = 930K. The energy variation at T = 460K is 
almost identical to that in the ground state, and even though the minimum at N = 20 is 
somewhat weaker at T = 930K'than at T = 0, the spectra are very similar. The magic 
numbers 8, 18 and 20 prevail even at this high temperature; 

To analyse the high-temperature configurations we plot in figure 12 the thermal average 
of the one-electron spectrum of the non-magic 16 cluster and the cluster at the magic size 
N = 20, both at the temperature T = 930K. For both the 16 cluster and the 20 cluster 
we observe a considerable broadening of the electronic levels due to the atomic motion, 
but an appreciable Fermi gap is still observed for both sizes. The broadening of the levels 
are seen to be several times ksT. Similar level broadening is seen in experiment [22]. 
This is a consequence of the fact ,that only the total energy, and not the one-electron 
levels, are at a minimum in the ground-state structure of a cluster. Therefore there will 
be first-order variations in the position of a level as a function of coordinate fluctuations. 
In the harmonic approximation the size of coordinate fluctuations is proportional to a, 
be proportional to f i , as opposed to the total energy, which is proporiional to T.  Even 
though the one-electron peak widths are large, the total energy only varies with thermal 
energies - J(3N - 6) /2k~T.  Forthis reason it is still possible to see magic-numbers at 
elevated temperature. 

The clusters at T = 930K may be regarded as liquid in many respects, as we shall now 
show. The bulk melting point of copper is 1356 K, but it is well known that surfaces can 
introduce disorder or pre-melting at temperatures below the bulk melting temperature [XI. 
This phenomenon has also been studied using simulations based on the effective-medium 
theory [U]. The clusters are finite systems, and therefore we do not observe a phase 
transition in the usual thermodynamic sense, and there may even exist a temperature regime 
in which solid- and liquid-like phases coexist [26]. In the following we shall present some 
calculated finite-temperature values for quantities that give indications of the temperature 
at which the clusters can be regarded as melted: the eccentricity and the radial and angular 
correlation functions. 

As a signature of the fluctuations in the overall shape of a cluster at a particular 
temperature we plot the average value of the smallest eccentricity € 1  (8) in figure 13 for all 
cluster sizes at the same temperatures as in figure 11. We first observe that at T = 460K 
the spherical nature of the 13 cluster has been suppressed so that it falls more naturally on 
the Clemenger curve for the eccentricities. This is an indication that the shell energy is 
important at this temperature compared with the bulk-metal-like interactions that drove the 
13  cluster^ spherical in the ground state. Most of the pronounced peaks in the curve have 

~. 

~ and therefore the leading term in the temperature variation of a one-electron level will also 

~ 



5600 0 B Christensen and K W Jacobsen 

0.6 

0.4 -- 0.2 
i 
J 0.0 
y1 
0 
0 0.4 

0.2 

" "  
- 5  - 4  -2 0 2 

Energy (SV) 

Figure 12. Temperature-averaged one-electron spec- 
trum for the cluster N = 20 at T = 930K. Broken 
curve: average EF. Full veeical lines: energy levels 
from equilibrium smcture. i.e. the one-electron spec- 
uum at zero temperature. A large dip in Ihe ws at 
the Fermi level is still clearly seen even at lhk high 
temperature. 

0.4 - 
0 5 10 15 20 25 30 

ciusier sire 

Fire 13. Average smallest eccenh'icity 61. Full 
curve: T = 0. Broken curve: T = 4M)K. Chain 
curve: T = 930K. The sttuclure of the specr" is 
smeared out at the higher temperaturs; at the highest 
temperalure the magic cluster N = 20 is no longer more 
spherical than its neighbours. 

disappeared at T = 930 K, which is a sign that the clusters at this temperature sample a much 
larger region of phase space. However, as noted above, the clusters maintain appreciable 
Fermi gaps even at this temperature due to local Jahn-Teller distortions. 

The detailed atomic smcture is probed by the radial and angular correlation functions. 
In figure 14 the angular correlation function is shown for the 20 cluster for a range of 
temperatures. We observe that the pronounced peaks in the low-temperature spectra for 
the second, third and foulth nearest-neighbours disappear in a temperature regime around 
230460K. This indicates a transition in the cluster to a more disordered 'phase' at this 
temperature. 

- ._ 
3 

t e - g 

30 60 90 120 150 180 

Angls (deg.) I*mpa,d"ra (U) 

Figure 14. Angular correlation function at cluster size 
N = 20. A cutoff radius of 5.60 bok was uskd, cf the 
previous figure. From hnom to top: 7 = 0 ground 
state. T = 230 K, T = 460K and T = 9 3 0 L  thermal 
averages. It is clearly indicated that the smcture 
melts between the two temperatures T = 230 K and 
7 =&OK. 

F i r e  15. Heat capacity of Cui3 and Cu20 calcu- 
laled [27] from energy dish'ibutions of Monte Carlo 
runs at different T. There is one Well defined feature 
at T 450K for CUI), indicating a finite-size smeared 
phase Itansition. The 20 cluster exhibits a complex be- 
haviour with a deviation from the harmonic behaviour 
cp = (3N - 6) /2 seuing in below 7 = ZOOK. 

On the basis of energy distributions for a whole set of Monte Carlo runs at different 
T i! is possible [27] to give estimates of the classical density of states W ( E )  such that 
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thermodynamic averages of functions of energy f (E) can be calculated as 

(f )T = /" dE f(E) "(E) 

Using this method we have calculated the heat capacity c p  as a function of T for different 
cluster sizes. In figure 15 we show the results for N = 13 and N = 20. For Cui3 there 
is a clear indication of a smeared-out phase transition at T N 450 K, whereas the picture 
for Cum is difficult to interpret. Studies of Lennard-Jones clusters [28] have indicated clear 
melting transihons for cluster sizes N = 13, 55 and 147, corresponding to closed Mackay 
icosahedra. Guided by the above-mentioned results for eccentricity and correlation functions 
as well as by observations of the configurations assumed by C U , ~  at different temperatures it 
is possible to correlate the feature in the cp curve with a transition from configurations with 
one well defined central atom to open configurations with no highly coordinated atoms. 

The rise of cp for CUZO at very low T may be associated with soft shape oscillations or the 
possible existence of different isomers, as is found to be the case in recent theoretical studies 
of small Na and Si clusters 1291. The underlying mechanisms have not yet been sorted out 
in any detail. The results seem to indicate that cluster sizes corresponding to close-packed 
configurations are not necessarily representative of the thermodynamic properties of small 
clusters, and that further investigations of other sizes are necessary. This is also concluded in 
a recent paper [30] on small Be clusters. In this work, Bel3 is seen to have a higher melting 
point than smaller Be clusters, probably as a consequence of the close-packed ground-state 
structure. 

4. Conclusion 

The effective-medium model with a tight-binding description of the shell energy has 
been shown to give a reliable description of the atomic structure of small Cu clusters. 
The calculated ground-state structures are in close agreement with experiment and other 
calculations and it reproduces the magic sizes observed experimentally. The coupling 
between the atomic and electronic degrees of freedom through a Jahn-Teller-like effect has 
been shown to have a number of important consequences. It is crucial for understanding the 
stability of the magic clusters at high temperatures and it is responsible for the strong even- 
odd oscillations which are experimentally observed. The atomic motion also plays a key 
role in the large broadening of the electronic levels observed in photoelectron spectroscopy. 
A phase transition of CU,~ at T Y 450K is indicated by various analyses of the Monte 
Carlo results, whereas clusters of other sizes show more complex behaviour. 
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